PROWOOD LIMITED # PROLAM COMPOSITE BEAM PLX20-250100 ### **CHARACTERISTIC DESIGN STRENGTHS** Based on testing carried out by SCION with results dated 8 September 2020 Applies only to 240x90 with 40x8 steel insert top and bottom, | Е | f'b | f's | f'c | f't | G | |---|---------|-------|-------------------------------|---------|------------------------| | Lower bound
Modulus of
Elasticity | Bending | Shear | Compression parallel to grain | Tension | Modulus of
Rigidity | | GPa | MPa | MPa | MPa | MPa | MPa | | 20 | 40 | 3.7 | 18 | 4 | 480 | ## Section properties for design: Moment of Intertia $I = 1.014 \times 10^{-4} \text{ m}^4$ Section Modulus $Z = 8.448 \times 10^{-4} \text{ m}^3$ Area A = **0.02112** m^2 #### **NOTES:** - 1 Intended for use as a beam and not as tension or compression member - 2 Bending strength and MoE have been determined from testing. Other properties are based on SG6 timber - 3 Beam design to be in accordance with NZS3603 assuming a timber member using appropriate factors. (eg ϕ =0.8) - 4 Provisional k2 factor for deflection = 1.5 subject to confirmation - 5 Joint group J5 for design of connections. ME Civil CMEngNZ CPEng 145511 IntPE(NZ) **TASMAN CONSULTING ENGINEERS** 1 October 2020 ## PROWOOD LIMITED # PROLAM COMPOSITE BEAM PLX20-300100 ## **CHARACTERISTIC DESIGN STRENGTHS** Based on testing carried out by SCION with results dated 21 April 2021 Applies only to 290x90 with 40x10 steel insert top and bottom, | E Lower bound Modulus of Elasticity | f'b
Bending | f's
Shear | f'c
Compression
parallel to grain | f't
Tension | G
Modulus of
Rigidity | |--|----------------|--------------|---|----------------|-----------------------------| | GPa | MPa | MPa | MPa | MPa | MPa | | 21 | 45 | 3.7 | 18 | 4 | 480 | ## Section properties for design: Moment of Intertia I = 1.79E-04 m⁴ Section Modulus Z = 1.23E-03 m³ Area A = 0.0255 m² #### **NOTES:** - 1 Intended for use as a beam and not as tension or compression member - 2 Bending strength and MoE have been determined from testing.Other properties are based on SG6 timber - 3 Beam design to be in accordance with NZS3603 assuming a timber member using appropriate factors. (eg ϕ =0.8) - 4 Provisional k2 factor for deflection = 1.5 subject to confirmation 5 Joint group as for Radiata Pine for design of connections. ME Civil CMEngNZ CPEng 145511 IntPE(NZ) TASMAN CONSULTING ENGINEERS 28 April 2021